Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Three‐dimensional dynamic models of subducting plate‐overriding plate‐upper mantle interaction

Identifieur interne : 004928 ( Main/Exploration ); précédent : 004927; suivant : 004929

Three‐dimensional dynamic models of subducting plate‐overriding plate‐upper mantle interaction

Auteurs : C. Meyer [France, Australie] ; W. P. Schellart [Australie, États-Unis]

Source :

RBID : ISTEX:BA84E022F68BE5734DFEBAB869AF6AEB14558253

Descripteurs français

English descriptors

Abstract

We present fully dynamic generic three‐dimensional laboratory models of progressive subduction with an overriding plate and a weak subduction zone interface. Overriding plate thickness (TOP) is varied systematically (in the range 0–2.5 cm scaling to 0–125 km) to investigate its effect on subduction kinematics and overriding plate deformation. The general pattern of subduction is the same for all models with slab draping on the 670 km discontinuity, comparable slab dip angles, trench retreat, trenchward subducting plate motion, and a concave trench curvature. The narrow slab models only show overriding plate extension. Subduction partitioning (vSP⊥ / (vSP⊥ + vT⊥)) increases with increasing TOP, where trenchward subducting plate motion (vSP⊥) increases at the expense of trench retreat (vT⊥). This results from an increase in trench suction force with increasing TOP, which retards trench retreat. An increase in TOP also corresponds to a decrease in overriding plate extension and curvature because a thicker overriding plate provides more resistance to deform. Overriding plate extension is maximum at a scaled distance of ~200–400 km from the trench, not at the trench, suggesting that basal shear tractions resulting from mantle flow below the overriding plate primarily drive extension rather than deviatoric tensional normal stresses at the subduction zone interface. The force that drives overriding plate extension is 5%–11% of the slab negative buoyancy force. The models show a positive correlation between vT⊥ and overriding plate extension rate, in agreement with observations. The results suggest that slab rollback and associated toroidal mantle flow drive overriding plate extension and backarc basin formation.

Url:
DOI: 10.1002/jgrb.50078


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Three‐dimensional dynamic models of subducting plate‐overriding plate‐upper mantle interaction</title>
<author>
<name sortKey="Meyer, C" sort="Meyer, C" uniqKey="Meyer C" first="C." last="Meyer">C. Meyer</name>
</author>
<author>
<name sortKey="Schellart, W P" sort="Schellart, W P" uniqKey="Schellart W" first="W. P." last="Schellart">W. P. Schellart</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BA84E022F68BE5734DFEBAB869AF6AEB14558253</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/jgrb.50078</idno>
<idno type="url">https://api.istex.fr/document/BA84E022F68BE5734DFEBAB869AF6AEB14558253/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002285</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002285</idno>
<idno type="wicri:Area/Istex/Curation">002285</idno>
<idno type="wicri:Area/Istex/Checkpoint">000238</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000238</idno>
<idno type="wicri:doubleKey">2169-9313:2013:Meyer C:three:dimensional:dynamic</idno>
<idno type="wicri:Area/Main/Merge">004A52</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:13-0352947</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000727</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005763</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000545</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000545</idno>
<idno type="wicri:doubleKey">2169-9313:2013:Meyer C:three:dimensional:dynamic</idno>
<idno type="wicri:Area/Main/Merge">004D19</idno>
<idno type="wicri:Area/Main/Curation">004928</idno>
<idno type="wicri:Area/Main/Exploration">004928</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Three‐dimensional dynamic models of subducting plate‐overriding plate‐upper mantle interaction</title>
<author>
<name sortKey="Meyer, C" sort="Meyer, C" uniqKey="Meyer C" first="C." last="Meyer">C. Meyer</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Ecole Normale Supérieure, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Geosciences, Monash University, Victoria, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schellart, W P" sort="Schellart, W P" uniqKey="Schellart W" first="W. P." last="Schellart">W. P. Schellart</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Geosciences, Monash University, Victoria, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="ISSN">2169-9313</idno>
<idno type="eISSN">2169-9356</idno>
<imprint>
<biblScope unit="vol">118</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="775">775</biblScope>
<biblScope unit="page" to="790">790</biblScope>
<biblScope unit="page-count">16</biblScope>
<date type="published" when="2013-02">2013-02</date>
</imprint>
<idno type="ISSN">2169-9313</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">2169-9313</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Backarc</term>
<term>Backarc extension</term>
<term>Billen</term>
<term>Buoyancy</term>
<term>Buoyancy force</term>
<term>Data points</term>
<term>Density contrast</term>
<term>Deviatoric</term>
<term>Dynamic models</term>
<term>Earth planet</term>
<term>Effective viscosity</term>
<term>Extensional</term>
<term>Faccenna</term>
<term>Fext</term>
<term>Free subduction</term>
<term>Funiciello</term>
<term>Geochem</term>
<term>Geophys</term>
<term>Geosyst</term>
<term>Glucose</term>
<term>Glucose syrup</term>
<term>Heuret</term>
<term>Kinematics</term>
<term>Laboratory models</term>
<term>Lallemand</term>
<term>Lateral</term>
<term>Lett</term>
<term>Lithosphere</term>
<term>Mantle wedge</term>
<term>Models show</term>
<term>Moresi</term>
<term>Negative buoyancy force</term>
<term>Numerical models</term>
<term>Oceanic</term>
<term>Partitioning</term>
<term>Plate</term>
<term>Plate deformation</term>
<term>Plate extension</term>
<term>Plate figure</term>
<term>Plate motion</term>
<term>Plate thickness</term>
<term>Plate thicknesses</term>
<term>Plate velocity</term>
<term>Positive correlation</term>
<term>Progressive subduction</term>
<term>Rheology</term>
<term>Rollback</term>
<term>Schellart</term>
<term>Shear tractions</term>
<term>Shemenda</term>
<term>Slab</term>
<term>Slab geometry</term>
<term>Slab rollback</term>
<term>Stegman</term>
<term>Strain rate</term>
<term>Subducted</term>
<term>Subducting</term>
<term>Subducting plate</term>
<term>Subducting plate velocity</term>
<term>Subduction</term>
<term>Subduction channel</term>
<term>Subduction partitioning</term>
<term>Subduction zone</term>
<term>Subduction zone interface</term>
<term>Subduction zones</term>
<term>Suction</term>
<term>Tectonic</term>
<term>Tectonics</term>
<term>Tectonophysics</term>
<term>Traction</term>
<term>Trench</term>
<term>Trench curvature</term>
<term>Trench migration</term>
<term>Trench retreat</term>
<term>Trench retreat velocity</term>
<term>Trench suction</term>
<term>Trench velocity</term>
<term>Trenchward</term>
<term>Upper mantle</term>
<term>buoyancy</term>
<term>correlation</term>
<term>deformation</term>
<term>dip</term>
<term>discontinuities</term>
<term>dynamics</term>
<term>extension</term>
<term>flow</term>
<term>flows</term>
<term>interfaces</term>
<term>kinematics</term>
<term>movement</term>
<term>plates</term>
<term>shear</term>
<term>slabs</term>
<term>stress</term>
<term>subduction</term>
<term>subduction zones</term>
<term>suction</term>
<term>thickness</term>
<term>three-dimensional models</term>
<term>trenches</term>
<term>upper mantle</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cinématique</term>
<term>Cisaillement</term>
<term>Contrainte</term>
<term>Corrélation</term>
<term>Coulée</term>
<term>Dalle</term>
<term>Discontinuité</term>
<term>Dynamique</term>
<term>Déformation</term>
<term>Ecoulement</term>
<term>Epaisseur</term>
<term>Extension</term>
<term>Flottabilité</term>
<term>Fosse abyssale</term>
<term>Interface</term>
<term>Manteau sup</term>
<term>Modèle 3 dimensions</term>
<term>Mouvement</term>
<term>Pendage</term>
<term>Plaque</term>
<term>Subduction</term>
<term>Succion</term>
<term>Zone subduction</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Backarc</term>
<term>Backarc extension</term>
<term>Billen</term>
<term>Buoyancy</term>
<term>Buoyancy force</term>
<term>Data points</term>
<term>Density contrast</term>
<term>Deviatoric</term>
<term>Dynamic models</term>
<term>Earth planet</term>
<term>Effective viscosity</term>
<term>Extensional</term>
<term>Faccenna</term>
<term>Fext</term>
<term>Free subduction</term>
<term>Funiciello</term>
<term>Geochem</term>
<term>Geophys</term>
<term>Geosyst</term>
<term>Glucose</term>
<term>Glucose syrup</term>
<term>Heuret</term>
<term>Kinematics</term>
<term>Laboratory models</term>
<term>Lallemand</term>
<term>Lateral</term>
<term>Lett</term>
<term>Lithosphere</term>
<term>Mantle wedge</term>
<term>Models show</term>
<term>Moresi</term>
<term>Negative buoyancy force</term>
<term>Numerical models</term>
<term>Oceanic</term>
<term>Partitioning</term>
<term>Plate</term>
<term>Plate deformation</term>
<term>Plate extension</term>
<term>Plate figure</term>
<term>Plate motion</term>
<term>Plate thickness</term>
<term>Plate thicknesses</term>
<term>Plate velocity</term>
<term>Positive correlation</term>
<term>Progressive subduction</term>
<term>Rheology</term>
<term>Rollback</term>
<term>Schellart</term>
<term>Shear tractions</term>
<term>Shemenda</term>
<term>Slab</term>
<term>Slab geometry</term>
<term>Slab rollback</term>
<term>Stegman</term>
<term>Strain rate</term>
<term>Subducted</term>
<term>Subducting</term>
<term>Subducting plate</term>
<term>Subducting plate velocity</term>
<term>Subduction</term>
<term>Subduction channel</term>
<term>Subduction partitioning</term>
<term>Subduction zone</term>
<term>Subduction zone interface</term>
<term>Subduction zones</term>
<term>Suction</term>
<term>Tectonic</term>
<term>Tectonics</term>
<term>Tectonophysics</term>
<term>Traction</term>
<term>Trench</term>
<term>Trench curvature</term>
<term>Trench migration</term>
<term>Trench retreat</term>
<term>Trench retreat velocity</term>
<term>Trench suction</term>
<term>Trench velocity</term>
<term>Trenchward</term>
<term>Upper mantle</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Glucose</term>
<term>Plat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We present fully dynamic generic three‐dimensional laboratory models of progressive subduction with an overriding plate and a weak subduction zone interface. Overriding plate thickness (TOP) is varied systematically (in the range 0–2.5 cm scaling to 0–125 km) to investigate its effect on subduction kinematics and overriding plate deformation. The general pattern of subduction is the same for all models with slab draping on the 670 km discontinuity, comparable slab dip angles, trench retreat, trenchward subducting plate motion, and a concave trench curvature. The narrow slab models only show overriding plate extension. Subduction partitioning (vSP⊥ / (vSP⊥ + vT⊥)) increases with increasing TOP, where trenchward subducting plate motion (vSP⊥) increases at the expense of trench retreat (vT⊥). This results from an increase in trench suction force with increasing TOP, which retards trench retreat. An increase in TOP also corresponds to a decrease in overriding plate extension and curvature because a thicker overriding plate provides more resistance to deform. Overriding plate extension is maximum at a scaled distance of ~200–400 km from the trench, not at the trench, suggesting that basal shear tractions resulting from mantle flow below the overriding plate primarily drive extension rather than deviatoric tensional normal stresses at the subduction zone interface. The force that drives overriding plate extension is 5%–11% of the slab negative buoyancy force. The models show a positive correlation between vT⊥ and overriding plate extension rate, in agreement with observations. The results suggest that slab rollback and associated toroidal mantle flow drive overriding plate extension and backarc basin formation.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Victoria (État)</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Melbourne</li>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Meyer, C" sort="Meyer, C" uniqKey="Meyer C" first="C." last="Meyer">C. Meyer</name>
</region>
</country>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Meyer, C" sort="Meyer, C" uniqKey="Meyer C" first="C." last="Meyer">C. Meyer</name>
</region>
<name sortKey="Schellart, W P" sort="Schellart, W P" uniqKey="Schellart W" first="W. P." last="Schellart">W. P. Schellart</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Schellart, W P" sort="Schellart, W P" uniqKey="Schellart W" first="W. P." last="Schellart">W. P. Schellart</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004928 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004928 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:BA84E022F68BE5734DFEBAB869AF6AEB14558253
   |texte=   Three‐dimensional dynamic models of subducting plate‐overriding plate‐upper mantle interaction
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024